
# WIOSUN® PV-Therm-180

**Combined Heat and Power Technology** 





## WIOSUN® PV-Therm-180

### 2.5 x Energy Output:

PV-Therm generates up to 2.5 times the energy yield per sq. ft. of standard photovoltaic systems.

### **Higher Efficiency:**

PV-Therm simultaneously generates hot water while cooling the solar electric cells. This substantially raises the electric cell efficiency.

### **Extended Life:**

By cooling the panel and lowering the temperature we can extend the life of the panel and reduce output deterioration.

### **Better Space Utilization:**

The combination of higher output and higher efficiency means better utilization of limited roof or rack space.

### **Lower Installation Cost:**

Combining these two power generation functions eliminates redundant materials (glass, racking, etc.) and saves labor.

### **Cooler Roof:**

Extracting heat from the back of a photovoltaic panel, which can exceed 170 degrees F during the summer, both lowers the building's cooling load and enhances the useful life of the roof.

### **Cooling PV:**

The temperature behind a conventional PV module can exceed 170 degrees F on a summer day, resulting in a 25-30% drop in electrical output. The PV-Therm extracts heat from the PV portion of the module, raising the module output dramatically while simultaneously providing useful hot water.

### **Hot Water Generation:**

PV-Thermal can generate 140 degree F hot water to offset the cost of expensive energy from fossil fuels.

# The BEST of BOTH WORLDS



### **Product History:**

The WIOSUN PV-Therm was developed by Solarzentrum Allgau near Munich, Germany between 2003-2008. Solzentrum Allgau designed, manufactured and installed many prototype systems. In the first quarter of 2008, Solarzentrum Allgau completed an automated production facility that has produced thousands of panels in the past two years for German consumption and export to 12 countries. Additional plants are planned for the United State, South Korea and Yugoslavia in 2011.

### **Commercial/Industrial Applications:**

Hospitals and Health Centers, Commercial Pools, Colleges and Universities, Industrial Plants



| MODULE CHARACTERISTICS            |                                      |  |  |  |  |
|-----------------------------------|--------------------------------------|--|--|--|--|
| System Voltage max                | 1000V                                |  |  |  |  |
| Capacity Tolerance                | -0 / +3 %                            |  |  |  |  |
| Size of Cells                     | 6.1 x 6.1                            |  |  |  |  |
| Number/Type/Size of Cells         | 48, polykristalline, 8 x 6           |  |  |  |  |
| NOCT                              | 118.4 °F ± 3.6 °F                    |  |  |  |  |
| Temperature Coefficient Isc       | + 0.04 % / °C                        |  |  |  |  |
| Temperature Coefficient Uoc       | + 0.35 % / °C                        |  |  |  |  |
| Temperature Coefficient PMPP      | + 0.5 % / °C                         |  |  |  |  |
| Overall Size L x W x H            | 51.8 in x 39.8 in x 0.79 in          |  |  |  |  |
| Weight                            | 85.1 lbs                             |  |  |  |  |
| Glass thickness                   | 0.13 in                              |  |  |  |  |
| Maximum Surface Load Capacity     | 5.400pa / 112.8 lb/sf iaw. IEC 61730 |  |  |  |  |
| Connecting System                 | MC4                                  |  |  |  |  |
| Product warranty                  | 2 years                              |  |  |  |  |
| Performance guarantee, electric   | 90/80% - 10/25 years                 |  |  |  |  |
| Safety Class                      | II                                   |  |  |  |  |
| TÜV/Keymark/ANSI/UL/CEC/SRCC/FSEC | IEC 61215 / IEC 61730 / 1703 i.P.    |  |  |  |  |

| 39.2 in       | 1.58"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photovoltafes | 1.58° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° 1.79° |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

39.8 in 39.2 in

| THERMAL CHARACTERISTICS  |                                  |  |  |  |  |
|--------------------------|----------------------------------|--|--|--|--|
| Absorber Surface Area    | 12 ft²                           |  |  |  |  |
| Connections              | DN 18                            |  |  |  |  |
| Fluid Capacity           | 1.32 Gallons                     |  |  |  |  |
| Operating Pressure       | max. 21.44 PSI                   |  |  |  |  |
| Test Pressure            | max. 42.87 PSI                   |  |  |  |  |
| Flow Rate                | 7.92-26.4 gal/h and module       |  |  |  |  |
| Delta T                  | 5 K at STB                       |  |  |  |  |
| Operating Temperature    | between 50 °F – 140 °F           |  |  |  |  |
| Stagnation Temperature   | approx. 160 °F                   |  |  |  |  |
| Thermal efficiency eta 0 | approx. 55%                      |  |  |  |  |
| Collector yield          | approx. 51.1 W / ft <sup>2</sup> |  |  |  |  |









|                           |                        |    | PVT170P | PVT175P | PVT180P | PVT185P |
|---------------------------|------------------------|----|---------|---------|---------|---------|
| Capacity Rating -0 / +3 % | P <sub>max</sub> (STC) | Wp | 170     | 175     | 180     | 185     |
| Rated Voltage             | Uмpp                   | V  | 23.3    | 23.6    | 23.8    | 24.0    |
| Rated Current             | Імрр                   | А  | 7.30    | 7.42    | 7.56    | 7.71    |
| Short Circuit Current     | lsc                    | А  | 8.05    | 8.21    | 8.32    | 8.49    |
| Open Circuit Voltage      | Uoc                    | V  | 27.98   | 28.32   | 28.56   | 28.8    |
| Cell Efficiency           | %                      |    | 14.55   | 15.00   | 15.41   | 15.83   |
| Module Efficiency         | %                      |    | 12.97   | 13.35   | 13.73   | 14.11   |

# WIOSUN® PV-Therm-180

# Power Grid Power Grid Hospitals Multifamily Health Center Commerical Pool Agricultural



**Turnkey Installation • Attractive Payback • PPA or Lease Purchase Available** 

New Age Energy, Inc. 122 East Kings Highway, Suite 503 Maple Shade, New Jersey 08052 Toll Free: 877-866-0881 www.newageenergy.net